Полиэтилен научили проводить тепло
10.03.2010Большинство полимеров чрезвычайно плохо проводят как тепло, так и электричество, однако исследователи из Массачусетского Технологического Института (MIT) нашли способ, позволяющий превратить самый распространенный полимер – полиэтилен в материал, теплопроводность которого соответствует теплопроводности металла.
Новый метод заключается в вытягивании тонкой нити материала из раствора, и в обработке индивидуальных нитей, приводящей в конечном итоге к их упорядочению.
Новый процесс приводит к тому, что полимер приобретает способность эффективно проводить тепло в одном направлении, в отличие от металлов, равно хорошо проводящих тепло во всех направлениях. Такое свойство нового материала может оказаться полезным для применения там, где необходимо отводить от объекта избыток теплоты, например, в системах охлаждения компьютерных микросхем.
Ключом к приданию полимеру новых физических свойств оказалось превращение хаотично спутанных нитей молекул полимера в упорядоченную систему. С помощью точного кантилевера атомно-силового микроскопа исследователи медленно вытягивали нити полимера из раствора, упорядочивая их. С помощью того же атомно-силового микроскопа изучались свойства полученного волокна.
Руководители проекта Ганг Чен (Gang Chen) и Карл Ричард Содерберг (Carl Richard Soderberg) отмечают, что теплоповодность полученного волокна в направлении индивидуальных волокон в 300 раз выше, чем у исходного полиэтилена. Высокая теплопроводность материала может привести к тому, что его волокна окажутся полезными для рассеивания теплоты во многих практических приложениях.
Чен поясняет, что большинство ранее предпринимавшихся попыток получить полимеры с увеличенной теплопроводностью строились на введении в полимеры других материалов, как, например, углеродных нанотрубок, однако такие подходы позволяли добиваться лишь незначительного увеличения теплопроводности, поскольку значительному увеличению способности материала проводить тепло препятствовала граница раздела между двумя материалами; на границе раздела происходит значительное рассеивание тепла. Метод, предложенный исследователями из MIT, позволяет увеличить теплопроводность полимерного материала до уровня теплопроводности таких металлов, как железо или платины.
Получение новых волокон, в которых молекулы полимера упорядочены, представляет собой двустадийный процесс, включающий в себя две стадии нагрева и растяжения полимера, такой подход
Чен отмечает, что хотя полученный полимерный материал отличается наиболее высоким значением теплопроводности для материалов своего рода, модификация методики позволит увеличить теплопроводность еще в большей степени.
Та теплопроводность, которую полиэтиленовые волокна демонстрируют уже сейчас, вполне достаточна для использования новой модификации полимера в качестве дешевой замены металлам, применяющимся для теплопереноса во многих областях, особенно в тех, где анизотропная теплопроводность особенно важна – радиаторы-теплообменники, корпуса сотовых телефонов или пластиковые оболочки компьютерных микросхем. Исследователи полагают, что необычное сочетание высокой теплопроводности, небольшой плотности, химической стабильности и диэлектрических свойств нового материала может стать причиной разработки новых способов применения этого материала.
На настоящий момент теплопроводный полиэтилен был получен только как образец в лабораторных условиях, Чен и Содерберг надеются, что им удастся масштабировать новый метод получения до промышленных объемов, получая целые десятисантиметровые пластины полиэтилена с анизотропными теплопроводными свойствами.
Источник: Nature Materials
Обзоры по теме:
- Полиэтилен высокой плотности (HDPE, ПЭВП). Обзор рынка 2010
- Линейный полиэтилен низкой плотности (LLDPE, ЛПЭНП). Обзор рынка 2010
- Полиэтилен низкой плотности (LDPE, ПЭНП). Обзор рынка 2010
- Полиэтилен высокой плотности. Обзор рынка 2010 и прогноз 2011-2015
- Полиэтилен низкой плотности (LDPE, ПЭНП) обзор рынка 2010 и прогноз 2011-2015
- Обзор рынка линейного полиэтилена
- Обзор рынка полиэтилена (ПЭНП, ПЭВП, ЛПЭНП)